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The following tasks were completed as part of the program: 

1. Hybrid bio-inspired optimization: This task involves developing a hybrid bio-inspired 
optimization algorithm which enhances the Artificial Immune System (AIS) algorithm 
with techniques borrowed from PSO and GA. Preliminary results with three challenging 
mathematical test functions were shown to be promising in terms of the performance of 
the enhanced AIS (EAIS) algorithm. 

2. Hybrid method for electrically large structures: This task involves developing a 
hybrid code that can combine analytical, numerical and asymptotic techniques as they 
best fit to the problem at hand to simulate electrically large structures. 

3. Rotman lens applications:  This task involves the application of hybrid techniques to 
model printed Rotman lenses. 

4. Parallelization of full-wave techniques on hybrid platforms: This task involves 
developing a hybrid MoM-FMM code that utilizes CPU as well as GPU to handle 
problem sizes in the order of 10 Million unknowns. 

  

Task 1: Hybrid bio-inspired optimization 

1A. Enhanced Artificial Immune System Algorithm 

Bio-inspired optimization techniques rely on agents that independently sample the optimization 
space until a desired solution or the maximum number of iterations is reached.  The initial step is 
purely random, hence requires no a-priori guess of the solution. More intelligence is added to the 
search as time progresses based on accumulated knowledge on the search domain. This 
intelligence is based on the computation of a cost function, which is a measure of how well each 
agent has performed with respect to the desired solution; with high costs referring to poor 
solutions. The general principles of bio-inspired optimization are shown in Fig. 1. 

 



 
Fig. 1. A general block diagram of bio-inspired optimization methods. 

 
The computation of the cost function is the most numerically intensive part, and those algorithms 
which achieve a good solution with fewer number of cost computations are deemed more 
efficient. Employing more agents helps reduce the number of iterations to converge, but 
naturally requires a higher number of cost computations per iteration. Therefore, the total 
number of cost computations required to reach a solution is an objective means of testing the 
effectiveness of these algorithms.  

The AIS optimization is based on the clonal selection principles of our immune response to 
potential disease generating metabolisms, and simulates our body's defense system against 
viruses. Our adaptive immune system produces antibodies whose purpose is to bind to any 
antigen that it recognizes. For engineering applications, antibodies represent a possible solution 
to the optimization problem. The optimization space is discretized in order to emulate the binary 
form of gene behavior. The heuristic optimization specifics step in Fig. 1 is replaced by four 
steps in AIS: cloning, mutation, combination and sorting as shown in Fig. 2.   

 

 

Fig. 2. Conventional AIS procedure steps. 

The AIS algorithm begins the search with an initial set of random guesses of aN  antibodies; i.e. 
potential solutions. Each solution is represented by a bit string with a length equal to the product 
of the number of optimization variables and the number of bits per variable, bN . The antibodies 
are sorted based on their cost values; with lower cost solutions ranking higher in the list. Then an 



intelligent random search begins for the next set of solutions through the cloning and mutation 
processes, which are carried out at different rates defined by coefficients cρ , and mρ  

respectively. Based on cρ , a duplicate set of ckN  antibodies is created for the thk  antibody, such 
that good solutions are cloned more than poor ones. For the mutation step, a number of bits in the 
string are flipped randomly. The number of bits to be flipped is directly proportional to the index 
number k  of each antibody in the list, and is calculated based on the mutation rate. Finally, the 
cloned and mutated sets are combined with the original set and sorted again. The basic steps of 
the AIS algorithm are demonstrated in Fig. 3. The top aN  antibodies of the combined set are 
then selected for the next iteration. The process continues until either a desired solution or the 
maximum number of iterations is reached. Further details of AIS can be found in [1]. 

 
Fig. 3. Conventional AIS antibody production. 

In challenging problems, AIS can stagnate, and all good solutions may differ by only a few bits. 
By incorporating modifications to the conventional AIS algorithm, which bring more intelligence 
to the mutation stage, as well as by introducing concepts from other algorithms, its performance 
can be enhanced. We refer to the revised form of AIS as the enhanced AIS (EAIS) in the rest of 
the report. 

EAIS specific procedures are shown in Fig. 4, where brown and blue boxes indicate a 
modification to the existing process, and the newly introduced step, respectively.   Mutation is no 
longer carried out randomly, but is inspired by the concept of velocity towards the global best as 
in PSO [2]. Furthermore, a cross-over step is added based on the concept of producing children’s 
genes in GA, [3]. 

 



 

Fig. 4. Enhanced AIS procedure steps. 

1B. Performance Study for EAIS 

We investigated how EAIS compares to other bio-inspired optimization algorithms (e.g. PSO, 
AIS and ACO) by applying them to three mathematical test functions; namely Rosenbrock, 
Rastrigin, and Griewank. Each of these functions presents a unique set of challenges, and can be 
used to test the robustness of these algorithms. They are multi-dimensional functions, with a 
minimum value, which is zero, at 0x =  for Griewank and Rastrigin functions, and 1x =  for the 
Rosenbrock function. The expressions of these functions are given below, and their behaviors are 
demonstrated in Fig. 5 for the two dimensional case, i.e. N = 2. 
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               (a) Rosenbrock                                                            (b) Rastrigin 



 
                                                          (c) Griewank 

Fig. 5. Mathematical test functions in their 2-D forms. 

To investigate the performance of the algorithms, we observe how each of them converges to the 
minimum value as time progresses. A plot of the average best cost for 100 simulations as a 
function of the number of iterations is shown in Fig. 6 for each test function. We observe that 
EAIS is the fastest to converge to a low cost for all of the test functions, with PSO being the 
second contender.  

 

(a) Griewank function 
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(b) Rastrigin function 

 

(c) Rosenbrock function 

Fig. 6. Performance comparison of the four optimization algorithms. 

1C. Parallel Implementation of EAIS on GPU system. 

Calculation of the cost function, which is the most time-consuming part of the algorithm, need to 
be done for each agent. Since each agent is independent, it can be run in parallel. Each GPU can 
handle a certain number of agents based on the number of GPUs available in the system, the 
memory of each GPU as well as the complexity of the cost function. Fig. 7 shows the flowchart 
of the EAIS implemented with N GPUs. 
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 Fig. 7. EAIS flowchart with N GPUs. 

 

Task 2: Hybrid method for electrically large structures 

2A. Hybrid Method using Numerical and Analytical Solution 

Hybrid methods often combine at least two numerical techniques to efficiently simulate 
electrically large structures without a significant loss of accuracy, [4]-[5]. In this report, we 
develop a new hybrid method using a combination of numerical and analytical solutions. It is 
based on dividing the original object into smaller sub-domains. The sub-domains, which may 
contain arbitrarily shaped objects, can be solved by numerical techniques such as MoM. If a sub-
domain contains canonical objects, analytical techniques (such as the Mie solution for spherical 
objects) can be used. Asymptotic techniques can also be used. Each sub-domain is solved 
independently, and then the interactions between the sub-domains are accounted for iteratively. 
We aim to utilize the unique features of each sub-domain to reduce the computational 
complexity, while still preserving the accuracy. A general block diagram of this hybrid method 
for the case of two sub-domains is shown in Fig. 8. 

 

Fig. 8. A general block diagram of the hybrid method. 

The details of the iterative scheme are discussed for the case of two sub-domains below in Fig. 9. 
At the first iteration, a plane wave, Einc , illuminates the computational domain, and is assumed to 
be the only source of excitation. At iteration p, the total incident field for sub-domain 1 (as 
shown in Fig. 9a) is equal to the sum of original incident field, Einc , and the radiated fields from 

sub-domain 2, ( ) ( )2
pE r . Similarly, the total incident field for sub-domain 2 is equal to the sum of 



original incident field, Einc , and the radiated fields from sub-domain 1, ( ) ( )1E rp . However, the 

solution for sub-domain 2 (Mie scattering) requires the incident field to be in the form of plane 
waves. Therefore the radiated fields from sub-domain 1, ( ) ( )1E rp , must be decomposed into local 

plane waves illuminating sub-domain 2, as shown in Fig. 9b. This is necessary when any sub-
domain utilizes a method based on plane wave illumination. Further details for the hybrid 
techniques can be found in [6]-[7]. 

 

(a) From sub-domain 2 to sub-domain 1 

 

(b) From sub-domain 1 to sub-domain 2 

Fig. 9. Interfacing between sub-domains. 

2B. Numerical Results 

In this section, we provide a numerical example to validate the accuracy of the hybrid method 
(MoM-Mie in this case). We compare our results with the full-wave solution using the 
commercial software package FEKO. Fig. 10 shows the configuration for the test case, where 
two small conducting spheres with diameters of 1.5λ  are separated by a distance 2.5d λ=  from 



a larger conducting sphere with diameter of 3λ . The spheres are placed along the x-axis, and are 
excited by a z-polarized field plane wave along the x direction.  

The scattering problem is decomposed into two sub-domains. Sub-domain 1 consists of the two 
smaller spheres and sub-domain 2 consists of the large sphere. For sub-domain 1, we employ 
MoM while for sub-domain 2, we consider two different cases: MoM and Mie scattering. Once 
the fields are generated, the mutual interactions between the spheres take place by applying the 
iterative procedure in the same manner described in Section A. The incident field on sub-domain 
2 is decomposed into N = 961 plane waves. We show the backscattered radar cross section 
(RCS) results for the problem in Fig. 11  for the three cases. The dotted line shows the results for 
the entire problem using FEKO. The hybrid method results for the two cases are shown with the 
dashed line for the MoM-Mie combination, and with the solid line for the MoM-MoM 
combination. We observe that both hybrid methods offer a good agreement with FEKO. Both 
calculations converge after 9 iterations. 

 

Fig. 10. Geometry of the test case with three conducting spheres. 

 

Fig. 11. Calculated RCS for the test case. 
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Task 3: Rotman lens applications 

3A. Analysis Approach for Rotman Lens 

The classical methods for analysis and design of Rotman lenses, [8]-[9] or any different 
microwave lens are based on geometrical optics. However, the mutual coupling between ports, 
the multiple reflections within the lens cavity and the discontinuity at the junctions between the 
lens and the transmission lines at the beam or radiating ports are not incorporated. To overcome 
these limitations, we use an alternative two dimensional field analysis approach, which is based 
on the contour integral method [10] to analyze the lens. In this method, first the impedance 
matrix, Z, of the lens is calculated. Then the S-parameters, which yield the reflection, coupling, 
and transmission coefficients between various beam and radiating ports, are obtained by 
transforming the Z matrix. Finally the radiation characteristics of the lens are computed. The 
details of the method are discussed below. 

We consider an arbitrarily shaped planar microstrip configuration as shown in Fig. 12a. In order 
to obtain the RF voltage along the periphery, the wave equation is converted to into the contour 
integral form. The potential at an arbitrary point on the periphery satisfies the following integral 
equation (1) which is derived from Weber’s solution for cylindrical waves [10].  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
1 0 0 0 0

1 cos
2 n

C

V s k H kr V s j dH kr i s ds
j

θ ωµ = − ∫�     (1)   

where ( )2
0H  and ( )2

1H  are the zero order and the first order of the second kind of the Hankel 

functions, respectively. The variable r denotes the distance between points M and L, θ  denotes 
the angle between the vector from point M to L and the normal vector at point L, and ni  is the 
current density along the periphery. Equation (1) gives the relation between the RF voltage and 
the RF current along the periphery.  

To solve equation (1) numerically, the periphery is divided into N segments numbered as 1, 2,…, 
N  corresponding to segment widths of W1, W2,…, WN, respectively as shown in Fig. 12b. By 
assuming the electric and magnetic field intensities are constant over the width of each segment, 
the integral equation in (1) can be rewritten into a system of matrix equations. 

   1V U HI−=   (2) 

The matrix U and H can be found in [10]. From the above relations, the impedance matrix of the 
equivalent periphery is obtained as  

 1Z U H−=  (3)  



                                                
(a)                                                                                           (b) 

Fig. 12. Arbitrary planar configuration analyzed by the contour integral approach. 
 

3B. Segmentation using Z Matrix 

The contour integral method discussed in the previous section can be applied for any arbitrary 
two dimensional planar structure. However, in many practical applications, the two dimensional 
planar structure can be decomposed into several segments which themselves have simpler shapes 
such as squares, rectangles, triangles, circular sectors and so on. For these shapes, employing an 
analytical approach provides better efficiency compared to contour integral approach. In this 
section the segmentation method that combines the Z matrix of each segment to give the entire Z 
matrix is discussed. 

In the segmentation method, the overall Z matrix can be decomposed as 

  p ppp pc

cp ccc c

V IZ Z
Z ZV I

    
=    
    

 (4)  

where p and c are the externally and internally connected ports, respectively as shown in Fig. 13. 
V, Z and I are the voltage, current and impedance matrices at the corresponding ports. The 
interconnection constrains are as follows: the voltages at two connected ports are equal, and the 
sum of currents at the two connected ports is zero. These conditions can be formulated as 

 1

2

0
0

c

c

V
I

Γ =
Γ =

  (5) 

where 1Γ  and 2Γ  are two matrices with / 2c  rows and c  columns describing the connections. 1Γ  

and 2Γ  can be expressed as 
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where I is identity matrix. Combining  (5) and  (6), the overall impedance Z matrix can be 
derived as 

  
1

1 1

2 0
cc cp

p pp pc

Z Z
Z Z Z

j

−Γ Γ   
= −    Γ   

    (7) 

More information on the segmentation method can be found in [10].  

 

Fig. 13. Segmentation of planar configuration 

3C. Preliminary Results 

We consider the test case using a small Rotman lens-like structure as shown in Fig. 14 where 8 
ports reside on a 43 mils thick Duroid 6002 ( )2.94, tan 0.0015rε δ= =  backed by a ground 

plane. The structure is decomposed into 9 segments: i.e. one lens region without taper and eight 
taper sections connecting to the lens. The Z matrices for nine segments are computed 
independently by using the contour integral method, and the overall Z matrix of the structure is 
obtained by using the segmentation method as described in section 3B. Then the S-parameters of 
the structure is calculated by transforming the overall Z matrix. The structure is analyzed at 41 
equally spaced frequencies from 1 to 5GHz. The test results are compared with FEKO, a 
commercial EM software package. A comparison of return loss and port coupling magnitudes 
and phases are shown in Figs. 15-18. We observe that the results are slightly different between 
FEKO and the contour integral method. This is understandable since the contour integral method 
assumes the fields are constant in the z direction.  

  



 

Fig. 14. Model used for validation 

 

Fig. 15. Port 2 reflection magnitude 
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Fig. 16. Port 2 reflection phase 

 
 Fig. 17. Port 2-4 coupling magnitude 
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Fig. 18. Port 2-4 coupling phase. 

Task 4: Parallelization of full-wave techniques on hybrid platforms 

4A. Method of Moments (MoM) Enhanced with Fast Multi-pole Method (FMM) 

The Fast Multipole Method (FMM), which was first introduced by Rokhlin, [11] as an 
augmentation to MoM, is one of the well-known techniques to reduce the computational 
complexity of electrically large problems without a significant loss of accuracy. In FMM, the 
edges in the mesh of a given structure are classified into local groups. For a mesh size of N 
edges, M localized groups are formed such that each group supports approximately N/M edges. 
The groups are categorized as near and far, based on their spatial proximity. FMM allows the 
system matrix to be split into two components, Znear and Zfar, describing the near and far 
interactions among the edges, respectively. The interactions of edges within a group or within 
neighbor groups constitute the sparse Znear matrix while the remaining interactions correspond to 
the Zfar matrix, as depicted in Fig. 19. The Znear matrix is computed using conventional MoM and 
stored in memory. The components of Zfar are computed as needed through a fast matrix vector 
multiplication (MVM), which requires computations of radiation, TE, receive, RE, and translation 
functions, TL. These functions are calculated over a set of K directions to carry out the unit 
sphere integration [11].  
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Fig. 19. Sparse Znear, and Zfar matrices. 

4B. MoM-FMM Implementation on hybrid CPU-GPU platforms 
 

The FMM basically consists of three main steps: pre-processing, processing, and post-
processing. The pre-processing step involves importing the geometry mesh and clustering edges 
into groups using the regular grid-based group spacing. The algorithm computation depends only 
on non-empty groups. The processing step includes two phases, namely setup and solution of 
linear equation. The setup phase involves four calculation tasks, (i) Znear matrix, (ii) 
radiation/receive functions TE/RE, (iii) translation matrix TL, and (iv) V vector. Iterative methods, 
e.g. BiCGSTAB, are employed for solving the linear equation. The matrix-vector multiplications 
(MVMs), which dominate most of the computation in the solving phase, consists of calculating 
near and far MVMs. The far MVM comprises aggregation, translation, and disaggregation 
stages. Finally, the electromagnetic quantities of interest, e.g. scattered fields, are calculated in 
the post-processing step. 

Based on our profiling results, we focus our implementation on the most computationally 
intensive step, i.e. the processing step. We notice that the translation matrix and the Znear matrix 
are the critical factors that govern the memory requirement, and the translation stage and the near 
MVM are the two most time-consuming stages in the FMM. With a careful analysis of the entire 
algorithm, we thus develop a hybrid CPU-GPU implementation as depicted in Fig. 20. This 
strategy allows concurrently computing the translation and the near interactions while 
minimizing the memory usage by storing only necessary quantities, and calculating all others on-
the-fly.   

 



Fig. 20. Flowchart of FMM processing step using CPUs and GPU. 

4B.1. Workload Distribution 

Three parallelization levels are involved in the implementation: (i) between nodes using MPI, (ii) 
among CPU cores and GPU in each node using the POSIX pthreads model, and (iii) on GPU 
using the CUDA model. The balanced workload distributions among nodes are achieved by two 
multi-node parallelization schemes. The first scheme involves the equal distribution of M groups 
among n computing nodes. We define this technique of data distribution as group-based 
distribution. The group-based distribution is applied for the near interactions and the V vector. 
The second scheme involves the distribution of K independent direction computations among the 
nodes which is defined as direction-based distribution. This is applied for the far interactions, i.e. 
aggregation, translation and disaggregation, due to the fact that each direction is completely 
independent of each other. 

Within each node, two parallelization schemes are developed for the hybrid CPU-GPU 
environment. For the stages only using GPU, the CUDA thread-block model is exploited to 
calculate the workloads assigned to that node. For the translation stage and near MVM, the 
pthreads is utilized on CPU cores in parallel with CUDA model. Each node is currently assigned 
approximately K/n translation matrices each of which has M rows. A combined group-direction 
distribution is employed in which the assigned M*K/n rows of translation matrices are 
distributed among CPU cores and GPU. Given P as the ratio of a single CPU core computation 
time versus a single GPU time in performing the translation stage, we could distribute the M*K/n 
rows of translation matrices (known as 0

translW ) among the processors such that the amount of 
time spent on CPUs (translation and near MVM) and GPU (translation) is balanced, i.e. 

transl transl ZnearI
GPU CPU CPUT T T= + . 

 0 ,transl transl transl
GPU CPU CPUW W n W= +  (8) 

 ,
transl transl

transl transl ZnearI ZnearIGPU CPU
GPU CPU CPU CPUtransl transl

GPU CPU

W WT T T T
B B

= + ⇒ = +  (9) 

where transl
CPUW  and transl

GPUW are the workload assigned to each CPU core and GPU , respectively, in 

the given node; transl
CPUB  and transl

GPUB are the processing throughput of a CPU core and GPU , 

respectively; and nCPU denotes the required number of CPU cores; ZnearI
CPUT is the execution time to 

perform near MVM on CPUs. 

As a result of equations (8) and (9), we could distribute the work among the processors 
proportionally to their relative speed/throughputs as follows: 



 0 0 , and  ,
transl transl

transl transl CPU
CPU GPU

CPU CPU CPU

W W P nW W
P n P n P n

γ γ−
= = +

+ + +
 (10) 

where 
transl
GPU
transl
CPU

BP
B

= and ZnearI transl
CPU GPUT Bγ = . 

Since the translation stage is performed on GPU and CPUs, we can reduce the execution time as 
compared to the case of using only GPU. Based on the aforementioned workload distribution, the 
relative decrease time can be theoretically estimated as follows: 

 , 0

, ,

(%) (%) 100,
transl transl transl

o GPU GPU CPU
transl transl transl

o GPU o GPU CPU o

T T n WT
T T P n W

γ−   −∆
= = ×  +  

 (11)  

where ,
transl

o GPUT  is the time for GPU to complete the node-assigned workload 0
translW . 

4B.2. Hybrid Implementation 

In this strategy, the Znear matrix and the V vector are calculated once in the setup phase and 
stored in CPU memory. The readers are referred to our previous work in [12]-[14] for detailed 
CUDA implementations of Znear calculation and V vector calculation. This section focuses on the 
implementation of matrix-vector multiplication on the GPU cluster, see Fig. 21. The main CPU 
thread is responsible for launching CUDA kernel for the aggregation stage on GPU using on-the-
fly approach, and for setting up the pthreads environment for subsequent calculations on CPUs. 
The total number of parallel CPU threads per node is set to be equal to the number of CPU cores 
in a given node. The CPUs will then calculate one part of the translation (on-the-fly calculation) 
followed by the near MVM while the GPU concurrently performs the remaining of the 
translation on-the-fly. Finally, a CUDA kernel is invoked for the disaggregation stage on GPU 
using on-the-fly approach. 



 

Fig. 21. Hybrid matrix-vector multiplication (MVM) using CPUs and GPU. 

The matrix-vector multiplication inter-node communication at two steps: (i) before starting the 
MVM to update the estimated values for the unknowns among the nodes; (ii) after the 
disaggregation stage of the MVM to update the ZfarI results among the nodes. It should be noted 
that, the presented hybrid CPU-GPU implementation requires extra data transfers between CPU 
and GPU memory spaces. More specifically, at each MVM, the aggregated fields of required 
directions are copied to the CPU before the translation occurs in CPU cores, and the resultant 
translated fields are transferred back to GPU for the disaggregation stage. 

4B.3. Experimental Results 

The GPU cluster platform used in our experimental work consists of 13 computing nodes, each 
of which is populated with dual Intel processors X5650 (6 cores per CPU) with 48 GB of 
memory. Each node is also equipped with an Nvidia Tesla M2090 GPU card with 6GB of GPU 
memory. The nodes are interconnected through Infiniband. The cluster populates the Native 
POSIX Thread Library (NPTL) 2.5, CUDA v4.2, and MVAPICH2 v1.8.1.  

In our hybrid CPU-GPU implementation, the FMM is applied for the Electric-Field Integral 
Equation (EFIE) formulation and the bi-conjugate gradient stabilized method (BiCGSTAB) with 
diagonal preconditioning is used as the iterative solver. The single precision floating point 
representation is utilized for all experiments. Since the memory requirement mainly depends on 
the Znear matrix which is O(N) where N is the number of unknowns, the hybrid implementation 
can handle the problem size up to 10 million of unknowns.  

We first validate the accuracy of the implementation by calculating the radar cross section (RCS) 
values for two cases: (i) a PEC sphere of diameter 31.5λ (discretized with ~2M unknowns), (ii) a 



PEC sphere of diameter 70λ (discretized with ~10M unknowns). Each sphere is illuminated by 
an x-polarized normally incident field. The RCSs are compared with the results using Mie 
scattering and plotted in range of 140o to 180o as shown in Fig. 22 where 180o indicates the 
direction of forward scattering. For quantitative evaluation, a relative error is defined using the 
vector norm as follows  

 ( ) 2

2

% 100.FMM Mie

Mie

RCS RCS
e

RCS
−

= ×  (12) 

It can be observed that the hybrid CPU-GPU results and the analytical Mie solutions show good 
agreements with a relative error of 1.7% and 5.9% for the RCSs of the 31.5λ-diameter sphere 
and RCS of the 70λ-diameter sphere, respectively.  We note that a rather high relative error for 
the 70λ-diameter sphere case is due to the breakdown of the BiCGSTAB method after 428 
iterations. Since the BiCGTAB method’s convergence may be irregular, and there is a possibility 
that the method will break down [15], a remedy to this problem is to use a more robust iterative 
method, such as the Generalized Minimal Residual Method (GMRES), which will be 
investigated in our future work.  

   
                                        (a)                                                                          (b) 

Fig. 22. (a) RCS of a 31.5λ-diameter PEC sphere, (b) RCS of a 70λ-diameter PEC sphere. 
 
The performance of our hybrid CPU-GPU cluster implementation is evaluated in reference to an 
implementation on a single node with 12 CPU cores. Two metrics are used for the performance 
evaluation: (i) speedup, and (ii) scalability. The speedup is defined as the ratio of time required 
by multiple-node CPU-GPU implementation with respect to a single-node CPU implementation. 
Scalability is the normalized speedup of multiple nodes in reference to a single node. In our 
analysis, we consider the total execution time which is the sum of the computation time and the 
overhead associated with all communications between GPUs and CPUs. Two hybrid 
implementation cases are considered: (1) only GPU is used to perform the translation, and (2) 
CPUs and GPU jointly perform the translation (see Fig. 21). 
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The fixed-workload model (Amdahl’s Law) is employed in our performance analysis. The 
sphere diameter is chosen as d=31.5λ (~2M unknowns) which fully utilizes the CPU and GPU 
memory on a single node. It is observed in Fig. 23 that the hybrid case (1) achieves a speedup 
factor of 20 on a single node. When the hybrid case (2) is used, a portion of the translation is 
assigned to compute on CPU cores in parallel with GPU. As the workload is distributed properly, 
the execution time spent on CPU cores and GPU is balanced which leads to a decrease in the 
total time (5% of decrease). Hence, the speedup increases from 20 to 21. However, it does not 
show a significant improvement because the ratio of GPU and CPU processing throughputs is 
approximately 200 which is much higher than the total number of 12 cores in the CPU system. 
As the number of nodes increases, each node processes less workload which results in a decrease 
of the total execution time. It can be seen from Fig. 23 that the speedup can be up to 256 and 262 
for hybrid case (1) and (2), respectively, on 13 nodes. 

 

Fig. 23. Speedup of CPU-GPU implementations vs. single-node 12-core CPU implementation 
(CPU exec. time ≈ 4.1 hours, 20 iterations). 

In order to investigate the scalability of the hybrid CPU-GPU implementation, we compare how 
the speedup improves with increasing computing nodes as shown in Fig. 24. It can be seen that 
both hybrid implementation cases scale closely to the theoretical linear expectation. This good 
scalability results from the fact that our implementation has efficiently parallelized the algorithm 
and reduced the inter-node communication overhead. 



 

Fig. 24. Scalability of hybrid CPU-GPU implementations. 

 
Conclusions: 

Four different tasks have been investigated and completed successfully as part of this research 
effort. As a result of our work in this program our group is now able to solve for radiation and 
scattering problems that involve electrically large structures up to 10 Million unknowns using 
our 13 node GPU cluster.  
 
We believe we can solve for larger problem sizes by implementing the MLFMA technique on a 
hybrid GPU-CPU platform. Furthermore, we have initiated numerical methods for iterative 
solutions of multi-domain problems that can support the MLFMA development to achieve 
solutions for larger problems. Our parallelizable optimization tools can also be utilized in the 
design and optimization of such structures. 
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